
2018年机械振动噪声测试技术及工程应用专题交流会

东方所

机械振动测试工程应用方法

技术工程师 吴跃卿 2018年11月15日

目录

• 工程试验分类

• 部分行业标准

• 振动基本知识

• 工程中常用参数

coinv

东方所

一、工程试验分类

1.1 按试验目的分

- ◆ 动力学强度试验: 考核试件结构的动强度, 检验在给定条件下试件是否 产生疲劳破坏。
- ◆ 动力特性试验: 用试验的方法测出试件的动态特性参数, 如频率、阻尼、 振型等。
- ◆环境活应性试验, 洗用试件未来可能承受的振动环境去激励试件, 检验 其对环境的适应性。
- ◆其它目的试验: 出厂筛选试验、故障诊断试验、新材料研究试验、监测 试验等

-、工程试验分类

coinv 东方所

1.2 按试验在设计和生产不同阶段分

- ◆ 设计试验:产品研制过程中寻找样机的频响特性和缺陷。
- ◆ 鉴定试验:检验产品是否达到任务书的要求。
- ◆ 验收试验:全部产品均应通过最低量级的振动试验。
- ◆ 例行试验: 从一批产品中抽取一定量的产品进行较高量级振动试验

1.3 按载荷性质分

- ◆ 正弦振动: 定频或扫频
- ◆ 随机振动: 宽带随机或窄带随机试验
- ◆ 混合型振动: 宽带随机加正弦、宽带随机加窄带随机、宽带随机加正弦和

二、部分行业标准

2.1 汽车行业

GB 1495-2002《汽车加速行驶车外噪声限值及测量方法》

GB 16170-1996《汽车定置噪声限值》

GB 19757-2005《三轮汽车和低速货车加速行驶车外噪声限值及测量方法 (中国Ⅰ、Ⅱ阶段)》

GBT 14365-1993《声学 机动车辆定置噪声测量方法》

GBT 18697-2002《声学 汽车车内噪声测量方法》

QCT 57-1993《汽车匀速行驶 车内噪声测量方法》 OCT 58-1993《汽车加速行驶 车外噪声测量方法》

QCT 203-1995《矿用自卸汽车驾驶室噪声测量方法及限值》

BS EN 10326-2004《机械振动 评价车座振动实验方法》

GB-T 4970-1996 《汽车平顺性随机输入行驶试验方法》

Q HBM 108-94《汽车零部件振动试验方法》

二、部分行业标准

coinv 东方所

2.2 泵

GBT 29531-2013 《泵的振动测量与评价方法》

2.3 丁程机械

GBT 25614-2010 《土方机械 声功率级的测定 动态试验条件》

GBT 21682-2008 《旋挖钻机》

GB/T 6068.3-2005 《汽车起重机和轮胎起重机试验规范 第3部分: 结

GB/T9141-1998 《液压挖掘机 结构强度试验方法》

GB 8419-87 GB 8419-1987《土方机械 司机座椅 振动试验方法和限

2.4 家用电器

GB 19606-2004《家用和类似用途电器噪声限值》

二、部分行业标准

coinv 东方所

GB/T 4214.1-2000 《声学 家用电器及类似用途电器具噪声 测试方法 第 1 部分:通用要求》

2.5 能源电力

GB 10068-2000 《轴中心高为 56mm 及以上电机的机械振动 振动的测 量、评定及限值》

GBT 20140-2016《隐极同步发电机定子绕组端部动态特性和振动测量

GB10069.1-2006-T《旋转电机噪声测定方法及限值》

GB / T100693-2006《电机噪声限值》

2.6 声功率

GBT 3768-1996 《声学 声压法测定噪声源声功率级 反射面上方采用包络测 量表面的简易法》

GBT 6882-2008 声学 声压法测定噪声源声功率级 消声室和半消声室精密法

二、部分行业标准

coinv 东方所

GBT 16404-1996 《声学 声强法测定噪声源的声功率级 第1部分: 离散点

GBT 16404.2-1999 《声学 声强法测定噪声源的声功率级 第2部分:扫描 测量》

GBT 16404.3-2006 《声学 声强法测定噪声源声功率级 第3部分:扫描

三、振动基本知识

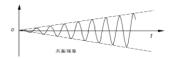
coinv 东方所

3.1振动响应

3.1.1 简谐力激励下的强迫振动

 $m\ddot{x} + c\dot{x} + kx = f\sin(\omega_n t)$

响应: 自由振动 + 强迫振动,以强迫振动为主;


自由振动:是衰减的,经过一定时间后接近于0; 强迫振动: 是稳定的, 一直持续的, 系统稳态时只有强迫振动,

振动频率为激励频率。

三、振动基本知识

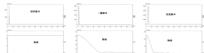
coinv 东方所

3.1.1 简谐力激励下的强迫振动

强迫振动的特点:

- (1) 形式为简谐振动
- (2) 频率等于激励频率
- (3) 振幅比较重要,与激励力大小、频率比、阻尼有关,与初始状态无关
- (4) 频率比:激励频率与某阶固有频率之比
- (5) 共振: 频率比越接近于1, 振幅越大, 产生共振

三、振动基本知识


3.1.2瞬态力引起的自由振动

瞬态力例如:锤击、阶跃激励等 自由振动:有阻尼时逐渐衰减至0

强迫振动: 是瞬态的,激励力作用结束后即结束。

特点: 瞬态力理论上频谱是宽带的, 因此能激励出结构的各阶振动, 因此其自由 振动也是各阶固有频率振动的叠加。(实际上高频难以覆盖)

脉冲力的频谱特点:

三、振动基本知识

coinv 东方所

3.2 运动的描述参量:振幅

$$f(t) = A\sin(\omega t - \varphi)$$

简谐运动方程,其中A为简谐振动幅值大小; ω 为振动角频率: ϕ 为初 始相位。

位移: $x = X \sin(\omega t - \varphi)$

速度: $v = \dot{x} = \omega X \cos(\omega t - \varphi) = V \cos(\omega t - \varphi)$

 $a = \ddot{x} = -\omega^2 X \sin(\omega t - \varphi) = A \sin(\omega t - \varphi)$ 加速度:

三、振动基本知识

coinv 东方所

coinv 东方所

3.2 运动的描述参量:振幅

幅值变化与频率有关: 位移相同时,速度与频率成反比,加速度与 频率的平方成反比

$$V = \omega X$$

$$A = \omega^2 X$$

$$A = \omega V$$

假设在相同力的作用下,不同频率的振动具有相同的加速度A=100

频率 f	1	10	100	1000
圆频率 ω	6.28	62.8	628	6280
加速度 A	100	100	100	100
速度 V	16	1.6	0.16	0.016
位移 X	2.5	0.025	0.00025	0.0000025

工程中,高频的振动位移都是非常微弱的,对结构几乎不形成损伤

 $m\ddot{x} + c\dot{x} + kx = 0$

阻尼: 阻碍相对运动,消耗系统振动的能量转化为其它能量

粘弹性材料阻尼:由于材料的粘弹性引起的,与振动速度成正比

 $n = \varepsilon = c/(2m)$

非线性阻尼: 大多数阻尼是非线性的, 一般等效为粘性阻尼进行处理

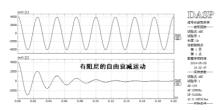
阳尼比:

粘性阻尼系数:

三、振动基本知识

3.3 运动的描述参量: 阻尼

 $D = n/\omega = \varepsilon/\omega = c/(2\sqrt{mk})$

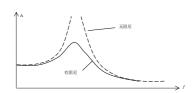

D>1 强阻尼(过阻尼)、

D=1 临界阻尼 D<1 弱阻尼 (欠阻尼,一般情形)

三、振动基本知识

3.3 运动的描述参量: 阻尼对自由振动的影响

- (1) 周期略有增大, 频率略有减小;
- (2) 振幅按指数衰减,其对数衰减系数用于计算阻尼比;
- (3) 若为单频振动,可实现时域法的阻尼比测量。



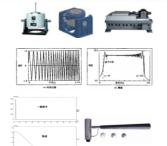
三、振动基本知识

coinv 东方所

3.3 运动的描述参量: 阻尼对强迫振动的影响

- (1) 谱峰频率略有降低;
- (2) 谱峰幅值减小;

三、振动基本知识

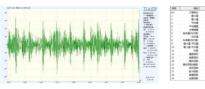

3.4 振动激励

目的

1、结构固有动力学特性参数 测量,如固有频率、频响特性、 模态参数:

2、环境模拟实验,如卫星、 飞机在振动台上模拟实际工况 的振动环境;

3、传感器等设备的校准和标 定。


四、工程中常用参数

coinv 东方所

4.1 振幅

形式:加速度、速度、位移

分析方法: 时域分析,时域指标统计。时域指标包括最大值、最小值、平均 值、平均幅值、有效值、方根幅值、偏度指标、峭度指标、偏态因数、峰态 因数、波形因数、脉冲因数、峰值因数和裕度因数等。

四、常用参数-振幅

东方所

四、常用参数-振幅

coinv 东方所

4.1 振幅常用指标

最大峰值: $\hat{X} = \max |x(t)|$ 反映某时刻振动的大小

 $X_{\text{RMS}} = \sqrt{\frac{1}{T}} \int_0^T x^2(t) dt$ 反映时间段内振动能量的大小 有效值:

波峰因数, $C = \frac{\hat{X}}{X_{Als}}$ 对轴承等旋转设备发生剥落、擦伤等故障时敏感

4.2 应用:

- 1、按行业标准测量相应幅值,进行产品合格与否判断
- 2、相关的研究性试验
- 3、故障诊断和长期监测,时域指标的变化反应了结构的健康状况

案例1: 发动机减振器隔振率测试

	1槽	2档	3档	4档	5档
测点1X向	0. 985	1. 172	1. 522	1. 693	1.804
测点1Y向	1. 442	1. 913	2. 236	2. 864	3. 156
测点12向	1. 382	1. 47	1. 76	1. 673	1. 724
测点2X向	17. 09	20.88	25. 72	27. 47	30.49
测点2Y向	23. 24	32. 47	39. 51	44. 03	48. 64
测点22向	21.14	31. 26	38. 46	42. 76	47. 18

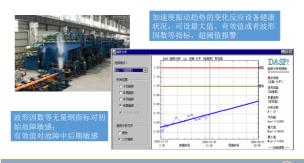
測点位置 1档 2楠 3楠 4楠 5楠 左后X向 94.3% 94.9% 94.% 93.8% 94.1% 左后Y向 93.8% 94.1% 94.3% 93.5% 93.5% 測点位置 93.6% 95.3% 95.4% 96.1% 96.3%

测点有效值

四、常用参数-振幅

应用举例2: 泵的 测量

GB/T 29531-2013泵 的振动测量与评价方法


		3	199	証功施	量记录					
图点编号		1		1		3				
開盤力向	開盤方向		A	H/X	V/Y	A	H/X	V/Y	A	
放例工况点纸量/(m²/))			31	[碳速度均	方板低レ	m./(mm	(e/s		
大鹿量			T	_			-			
規定直量			Т							
小在量		-	Т							
新加克斯			-							

接动照度范围		评价层的报动规则				
医动图度级	報遊問度分類界域 mm/s	第一家	第二表	第三奏	第四类	
0.28	6.28					
0.45	4.5	A	A			
0.71	6.11			A	A	
1.12	L II					
1,80	1.10	-				
2,50	1.00	C		В		
4.50	1.50		C		В	
7,10	E 50			С	- 100	
11, 20	11.00	D			С	
18.00	18.00	,	D	D		
28.00	18.00				D	
45.00	18.00					

四、常用参数-振幅

coinv 东方所

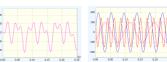
案例3: 钢厂轴承振动趋势分析

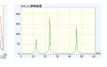
四、常用参数-振幅

案例4: 散热风机叶片应力测试

使用定制滑环连接采集仪和应变花, 测量叶片多种工况下主应力

四、常用参数-频率


coinv 东方所


4.2 頻率

对振动信号,有时为了研究其内在规律,需要分析随机信号的周期性,需要 将信号从时域变换到频域,得到的频谱中每个频率都对应信号的一个周期谐波分 量。实际波形可看成由若干正弦波组成。

分析方法: 常用FFT (快速傅里叶变换)

四、常用参数-频率

coinv 东方所

4.2.1FFT自谱的几种幅值形式

- ▶ 幅值谱Peak: 此方式反映信号各谐波分量的单峰幅值。
- ➤幅值谱Rms: 此方式反映信号各谐波分量的有效值幅值。
- ▶ 功率谱:此方式反映信号各谐波分量的能量,(Rms)²
- ▶ 功率谱密度:此方式反映信号各谐波分量的能量分布情况,(Rms)²/△f

4.4.2时间分辨率和频率分辨率

时间间隔: △t=1/SF 频率间隔: △f=SF/N

SF为采样频率, N为FFT计算的数据点数

矛盾——若要滅小 \triangle t则必须增大SF. 若要滅小 \triangle f 则必须減小SF例如,采样频率1024Hz,时间分辨率为1/1024=0.00097s,FFT分析点数1024,频率分辨率为1024/1024=1Hz

(INV) 北京东方振动和噪声技术研究所

四、常用参数-频率

Coinv 东方所

4.3 应用:

- ▶ 产品动力学特性参数设计和验证
- ▶ 按行业或公司标准测量相应频率,进行产品合格与否判断
- ▶ 研究性试验
- ▶ 故障诊断和长期监测,频域指标的变化反应了结构的健康状况

INV 北京东方振动和噪声技术研究所

26

四、常用参数-频率

coinv 东方所

案例1: 汽车模态分解和匹配

- 1、目的:消除或减小汽车烦人的振动和噪声,提高舒适性
- 2、方法: 首要原则是在设计上保证各子系统的模态频率首先不与发动机怠 速离励频率发生共振。

白车身及各子系统主要的振动频率都在5~80Hz以内,模态匹配的目标 是各系统自身的模态彼此解耦,同时与所有相邻的系统的模态彼此解耦, 模态之间频率相隔1Hz以上,相连系统之间的模态频率要求至少相隔3Hz以 I-

如某车型使用直列4缸发动机,怠速转速为750转/分,则激励频率为 25Hz,车辆各系统固有频率应与此频率分离。

(INV) 北京东方振动和噪声技术研究所

四、常用参数-频率

coinv 东方所

(INV)北京东方振动和噪声技术研究所

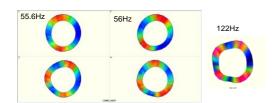
28

四、常用参数-频率

coinv 东方所

四、常用参数-频率

coinv 东方所


案例2: 发电机定子固有频率

四、常用参数-频率

coinv 东方所

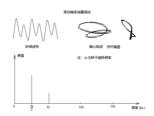
试验结果: 椭圆振型时满足标准要求, 四瓣振型时不满足要求

四、常用参数-频率

coinv 东方所

案例3: 起动机异常噪声频谱分析

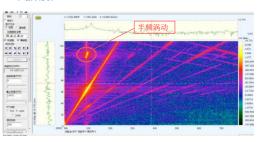
通过频谱分布的差异筛选问题件



四、常用参数-频率

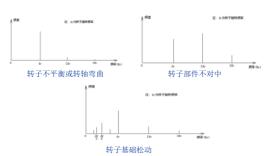
coinv 东方所

案例4: 电机滑动轴承油膜涡动。


滑动轴承轴瓦和油膜形成非线性流固耦合系统,一定转速和偏心时会出 现油膜涡动,涡动频率接近基频的一半,频谱图上明显接近于半频

四、常用参数-频率

coinv 东方所


案例4: 电机滑动轴承油膜涡动 三维谱阵分析

四、常用参数-频率

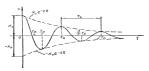
东方所

旋转机械其它故障特征频率

(INV) 北京东方振动和噪声技术研究所

四、常用参数-阻尼

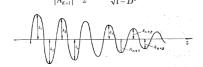
coinv 东方所


根据结构的振动信号计算阻尼比,可分时域法和频域法两类。

4.3时域法

4.3.1基本原理

通过单频自由衰减振动波形, 计算其对数衰减率, 得到阻尼比。 有阻尼单自由度自由振动:


$$X = Ae^{-\xi\omega_n t}\cos(\omega_d t + \phi)$$

四、常用参数-阻尼

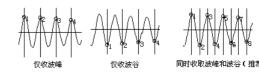
coinv 东方所

对数衰减率: | A__ | 1

阻尼比计算:

$$D = \frac{\delta}{\sqrt{\pi^2 + \delta^2}}$$

(INV) 北京东方振动和噪声技术研究所



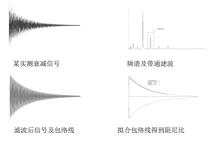
四、常用参数-阻尼

coinv 东方所

4.3.2峰值读数法

读取相邻若干波峰或者波谷的幅值,根据上面的公式计算平均的对数衰减率。 消除基线影响:应同时读取若干个波峰和波谷,计算平均对数衰减率。 提示;同时收取波峰波谷,消除信号中的直流飘移的影响。

(INV) 北京东方振动和噪声技术研究所


38

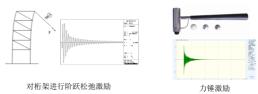
四、常用参数-阻尼

东方所

4.3.3包络线拟合

当信号不是单频时,可采用带通滤波和包络线拟合的方法。

(INV) 北京东方振动和噪声技术研究所



四、常用参数-阻尼

coinv 东方所

4.3.4试验方法

- (1) 阶跃松弛法,一般可得到初始振型频率(多为第一阶频率)下的自由衰减振动。
- (2) 锤击法,可得到自由衰减波形,但可能存在多阶频率。

(INV) 北京东方振动和噪声技术研究所

四、常用参数-阻尼

40

四、常用参数-阻尼

coinv 东方所

4.4频域法

4.4.1半功率带宽法

半功率点: 共振点频谱曲线上, 功率谱为峰值点一半的位置, 位于谱峰的左右两边。 半功率带宽: 半功率点之间的频率间隔。

误差分析: FFT谱上,存在 Δ f的误差影响,当低频(ω 较小)和小阻尼($\Delta\omega$ 较小)时, Δ f的影响将很明显。

阻尼比计算:

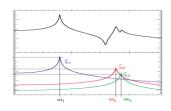
 $D = \frac{1}{2} \frac{\Delta \omega}{\omega}$

(INV) 北京东方振动和噪声技术研究所

coinv 东方所

4.4.2 INV**阻尼计法**

针对半功率带宽法的误差问题,INV阻尼计法精确拟合出实际的共振峰曲线,计算精确阻尼比。



四、常用参数-阻尼

coinv

4.4.3 模态拟合法

模态分析中可以拟合计算出阻尼比, 该方法可综合考虑多个测点的测量数据, 以及多阶模态之间(尤其是密集模态之间)的相互影响,其结果可靠准确,但 是操作复杂。

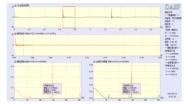
四、工程中常用参数-阻尼

coinv 东方所

4.4.4阻尼材料的阻尼测定

对于阻尼材料,由于其可能无法自支撑,则需要依附在金属材料上进行测量。该类测量已经标准化,可参考GBT18258,或GBT16406 基本原理:

- (1) 用金属材料制成悬臂梁,测量符合悬臂梁频率分布特点的各阶频率,并计算出 其弹性模量。
 - (2)将阻尼材料粘附在金属材料上,构成试件,测量其频率和阻尼比。 (3)根据粘附阻尼材料前后的频率变化,反推出阻尼材料的阻尼比。


东方所的材料阻尼测试系统和 "DASP阻尼材料共振法测试" 模块

四、常用参数-阻尼

案例: INV阻尼计法分析刀具阻尼

力锤激励,加速度传感器 测量响应,使用INV阻尼计 法分析阻尼

四、常用参数-动刚度

coinv 东方所

4.5 动刚度

结构受到动载荷时,抵抗动载荷的变形能力。

- (1) 动刚度与系统的质量、阻尼和静刚度有关
- (2) 随频率变化,当激励频率小于固有频率时,与静刚度基本相同;激励频 率大于固有频率时动刚度较大;激励频率与固有频率重合时动刚度最小。

$$K(j\omega) = \frac{F(j\omega)}{X(j\omega)} = -m\omega^2 + jc\omega + K$$

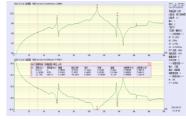
四、常用参数-动刚度

4.5.1测量方法

激振器或力锤激励,加速度传感器测量响应,进行传递函数分析,选择 "动刚度"。 Colony DAGP 49-99-Childry Holes

4.5.2应用

- (1) 减振器动刚度
- (2) 原点动刚度, 机械结构中重要的接附点 的局部动刚度。如汽车车身与发动机悬置、 副车架、悬架连接处、排气挂钩等位置处。
- (3) 承受载荷的重要部件。


四、常用参数-动刚度

coinv 东方所

案例:铣刀动刚度测量

了解刀具动刚度分布 情况,保证工况下具有较高的动刚度,以 免影响加工质量

谢谢大家

北京总部地址:

- 北京市海淀区上地信息产业基地
- · 科实大厦C座10C
- 科貿大厦516号

联系方式:

- 010-62989889/62988558

西南办事处地址:

- 四川省成都市武侯区万寿桥
- 南路339号清河苑17-3-2-4号
- •邮编: 610045

联系方式:

- 028-85030856
- 18628141888
- qiuxh@coinv.com
 www.coinv.com

INV 北京东方振动和噪声技术研究所